题目内容
【题目】为备战年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场,每场比赛胜者得分,负者得分,在每一场比赛中,甲胜乙的概率为,丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.
(Ⅰ)求的值;
(Ⅱ)设在该次对抗比赛中,丙得分为,求的分布列和数学期望.
【答案】(Ⅰ);(Ⅱ)见解析.
【解析】试题分析:(Ⅰ)由方程 ;(Ⅱ)依题意丙得分可以为,可得分布列,请求得
试题解析:
(Ⅰ)由已知,甲获第一名且乙获第三名的概率为.
即甲胜乙、甲胜丙且丙胜乙概率为,
∴, ∴.
(Ⅱ)依题意丙得分可以为,丙胜甲的概率为,丙胜乙的概率为
, ,
|
|
| |
|
|
|
∴.
练习册系列答案
相关题目
【题目】【2017湖南长沙二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:
质量指标值 | |||
等级 | 三等品 | 二等品 | 一等品 |
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查数据 ,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(2)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?