题目内容
1.在用数学归纳法证明等式$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$时,当n=1左边所得的项是$\frac{1}{2}$;从”k→k+1”需增添的项是$\frac{1}{(k+1)(k+2)}$.分析 把n=1代入即可求出,由数学归纳法可知n=k时,左端为$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$,到n=k+1时,左端为$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$+$\frac{1}{(k+1)(k+2)}$,从而可得答案.
解答 解:当n=1时,左边=$\frac{1}{1(1+1)}$=$\frac{1}{2}$;
②假设n=k时,$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$=$\frac{k}{k+1}$等式成立;
那么n=k+1时,$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$+$\frac{1}{(k+1)(k+2)}$=$\frac{k}{k+1}$+$\frac{1}{(k+1)(k+2)}$,
所以从”k→k+1”需增添的项是$\frac{1}{(k+1)(k+2)}$.
故答案为:$\frac{1}{2}$,$\frac{1}{(k+1)(k+2)}$.
点评 本题考查数学归纳法,着重考查理解与观察能力,考查推理证明的能力,属于中档题.
练习册系列答案
相关题目
9.已知不等式x2<logax在x∈(0,$\frac{1}{2}$)时恒成立,则实数a的取值范围为( )
A. | (0,1) | B. | [$\frac{1}{16}$,1) | C. | (0,$\frac{1}{16}$) | D. | (1,+∞) |
16.若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则f($\frac{1}{k-1}$)与$\frac{1}{k-1}$大小关系一定是( )
A. | f($\frac{1}{k-1}$)≥$\frac{1}{k-1}$ | B. | f($\frac{1}{k-1}$)≤$\frac{1}{k-1}$ | C. | f($\frac{1}{k-1}$)>$\frac{1}{k-1}$ | D. | f($\frac{1}{k-1}$)<$\frac{1}{k-1}$ |
13.已知集合A={x|y=$\sqrt{1-{x^2}}$},B={x|x=m2,m∈A},则( )
A. | A=B | B. | B∩A=∅ | C. | A⊆B | D. | B⊆A |
10.在等比数列{an}中,27a2+a5=0,则$\frac{{a}_{n+1}}{{a}_{n}}$=( )
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 3 | D. | -3 |