题目内容
甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结束相互独立,第1局甲当裁判.
(Ⅰ)求第4局甲当裁判的概率;
(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.
(Ⅰ)求第4局甲当裁判的概率;
(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.
(Ⅰ)(Ⅱ)
(Ⅰ)记表示事件“第2局结果为甲胜”,
表示事件“第3局甲参加比赛时,结果为甲负”,
A表示事件“第4局甲当裁判”.
则. 3分
. 6分
(Ⅱ)X的可能取值为0,1,2.
记表示事件“第3局乙和丙比赛时,结果为乙胜丙”,
表示事件“第1局结果为乙胜丙”,
表示事件“第2局乙和甲比赛时,结果为乙胜甲”,
表示事件“第3局乙参加比赛时,结果为乙负”.
则
,
, 10分
. 12分
(1)利用独立事件的概率公式求解,关键是明确A表示事件“第4局甲当裁判”和表示事件“第2局结果为甲胜”, 表示事件“第3局甲参加比赛时,结果为甲负”之间个独立关系;(2)明确X的可能取值,然后利用独立事件和互斥事件的公式逐一求解.因当x=1时较为复杂,故采用对立事件概率问题进行求解,即
【考点定位】本题考查独立事件和互斥事件的概率问题已经离散型数学期望,考查分析问题和计算能力.
表示事件“第3局甲参加比赛时,结果为甲负”,
A表示事件“第4局甲当裁判”.
则. 3分
. 6分
(Ⅱ)X的可能取值为0,1,2.
记表示事件“第3局乙和丙比赛时,结果为乙胜丙”,
表示事件“第1局结果为乙胜丙”,
表示事件“第2局乙和甲比赛时,结果为乙胜甲”,
表示事件“第3局乙参加比赛时,结果为乙负”.
则
,
, 10分
. 12分
(1)利用独立事件的概率公式求解,关键是明确A表示事件“第4局甲当裁判”和表示事件“第2局结果为甲胜”, 表示事件“第3局甲参加比赛时,结果为甲负”之间个独立关系;(2)明确X的可能取值,然后利用独立事件和互斥事件的公式逐一求解.因当x=1时较为复杂,故采用对立事件概率问题进行求解,即
【考点定位】本题考查独立事件和互斥事件的概率问题已经离散型数学期望,考查分析问题和计算能力.
练习册系列答案
相关题目