题目内容
【题目】已知椭圆()的离心率为,短轴的一个端点为.过椭圆左顶点的直线与椭圆的另一交点为.
(1)求椭圆的方程;
(2)若与直线交于点,求的值;
(3)若,求直线的倾斜角.
【答案】(1);(2);(3)或.
【解析】试题分析:(1)根据条件可得,,再结合条件,计算得到,和,求得椭圆的标准方程;(2)首先设,根据点的坐标求出直线的方程,并计算得到点的坐标,并表示,最后根据点在椭圆上,满足椭圆方程,计算得到常数;(3)设直线方程与椭圆方程联立,根据弦长公式,解得直线的斜率,最后得到直线的倾斜角.
试题解析:(1)∵
∴
∴椭圆的方程为
(2)由(1)可知点,设,则
令,解得,既
∴
又∵在椭圆上,则,
∴
(3)当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设其为,则
由可得,
由于,则设可得, ,
∴
∴解得
∴直线的倾斜角为或.
练习册系列答案
相关题目
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上表补充完整(不用写计算过程);
(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中)