题目内容
【题目】点P为两直线l1:3x+4y﹣2=0和l2:2x+y+2=0的交点.
(1)求过P点且与直线3x﹣2y+4=0平行的直线方程;
(2)求过原点且与直线l1和l2围成的三角形为直角三角形的直线方程.
【答案】(1)3x﹣2y+10=0(2)4x﹣3y=0或x﹣2y=0.
【解析】
(1)联立直线l1与l2的方程,求出点,再由两直线平行斜率相等,根据点斜式即可求解.
(2)根据题意l1和l2不垂直,分析可得符合条件的直线可以与l1,l2任一直线垂直,
从而可求出直线的斜率,利用点斜式即可求解.
(1)解方程组,得
,∴点P(﹣2,2),
∵直线3x﹣2y+4=0的斜率为,
∴过P点的直线为y﹣2(x+2),即3x﹣2y+10=0.
(2)∵l1的斜率k1,l2的斜率k2=﹣2,∴l1和l2不垂直,
∴符合条件的直线可以与l1,l2任一直线垂直,
∴斜率为或
,
∴直线方程为4x﹣3y=0或x﹣2y=0.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测.
地区 | |||
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.
【题目】《基础教育课程改革纲要(试行)》将“具有良好的心理素质”列入新课程的培养目标.为加强心理健康教育工作的开展,不断提高学生的心理素质,九江市某校高二年级开设了《心理健康》选修课,学分为2分.学校根据学生平时上课表现给出“合格”与“不合格”两种评价,获得“合格”评价的学生给予50分的平时分,获得“不合格”评价的学生给予30分的平时分,另外还将进行一次测验.学生将以“平时分×40%+测验分×80%”作为“最终得分”,“最终得分”不少于60分者获得学分.
该校高二(1)班选修《心理健康》课的学生的平时分及测验分结果如下:
测验分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
平时分50分人数 | 0 | 1 | 1 | 3 | 4 | 4 | 2 |
平时分30分人数 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
(1)根据表中数据完成如下2×2列联表,并分析是否有95%的把握认为这些学生“测验分是否达到60分”与“平时分”有关联?
选修人数 | 测验分 达到60分 | 测验分 未达到60分 | 合计 |
平时分50分 | |||
平时分30分 | |||
合计 |
(2)用样本估计总体,若从所有选修《心理健康》课的学生中随机抽取5人,设获得学分人数为,求
的期望.
附:,其中
0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879/p> | 10.828 |