题目内容
【题目】已知函数,其中为自然对数的底数.
(1)设函数(其中为的导函数),判断在上的单调性;
(2)若函数在定义域内无零点,试确定正数的取值范围.
【答案】(1) 在上单调递增.(2).
【解析】
(1)先分析得到,即得函数在上的单调性;(2)先利用导数求出
,再对a分三种情况讨论,讨论每一种情况下的零点情况得解.
(1)因为,则,
,
∴,
∴在上单调递增.
(2)由知,
由(1)知在上单调递增,且,可知当时,,
则有唯一零点,设此零点为,
易知时,,单调递增;时,,单调递减,
故,其中.
令,
则,
易知在上恒成立,所以,在上单调递增,且.
①当时,,由在上单调递增知,
则,由在上单调递增,,所以,故在上有零点,不符合题意;
②当时,,由的单调性知,则,此时有一个零点,不符合题意;
③当时,,由的单调性知,则,此时没有零点.
综上所述,当无零点时,正数的取值范围是.
【题目】传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:
戴口罩 | 不戴口罩 | |
青年人 | 50 | 10 |
中老年人 | 20 | 20 |
(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?
(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【题目】百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中表示通过自主招生获得降分资格的学生人数,表示被清华、北大等名校录取的学生人数)
年份(届) | 2014 | 2015 | 2016 | 2017 | 2018 |
41 | 49 | 55 | 57 | 63 | |
82 | 96 | 108 | 106 | 123 |
(1)通过画散点图发现与之间具有线性相关关系,求关于的线性回归方程;(保留两位有效数字)
(2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数;
(3)若从2014年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数的分布列和期望.
参考公式:,
参考数据:,,,