题目内容

设定义域为R的函数,若关于x的函数f(x)=
|lgx|,x>0
-x2-2x,x≤0
,若关于x的函数y=2f2(x)+2bf(x)+1有8个不同的零点,则实数b的取值范围是
-
3
2
<b<-
2
-
3
2
<b<-
2
分析:先将函数进行换元,转化为一元二次函数问题.结合函数f(x)的图象,从而确定b的取值范围.
解答:解:令t=f(x),则原函数等价为y=2t2+2bt+1.做出函数f(x)的图象如图,
图象可知当由0<t<1时,函数t=f(x)有四个交点.
要使关于x的函数y=2f2(x)+2bf(x)+1有8个不同的零点,则函数y=2t2+2bt+1有两个根t1,t2
且0<t1<1,0<t2<1.
令g(t)=2t2+2bt+1,则由根的分布可得
△=4b2-8>0
g(0)=1>0
g(1)=2b+3>0
0<-
2b
2×2
<1

解得
b>
2
或b<-
2
b>-
3
2
-2<b<0
,即-
3
2
<b<-
2

故实数b的取值范围是-
3
2
<b<-
2

故答案为:-
3
2
<b<-
2

点评:本题考查复合函数零点的个数问题,以及二次函数根的分布,换元是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网