题目内容

(本小题满分14分)
在平面直角坐标系中,已知椭圆过点,且椭圆的离心率为
(1)求椭圆的方程
(2)是否存在以为直角顶点且内接于椭圆的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由

解:(1)由,                             …1分
.                                  …2分
故椭圆方程为
椭圆经过点,则
.                                       …3分
所以                                          … 4分
所以椭圆的标准方程为.                          …5分
(2)假设存在这样的等腰直角三角形.
明显直线的斜率存在,因为点的坐标为,设直线的方程,则直线的方程为.         …6分
 得

所以,或[
所以点的纵坐标为                        …7分
所以.…8分
同理                    …9分[
因为是等腰直角三角形,所以,即
                              …10分

所以,即                    …11分
所以

所以,或                                  …12分
所以,或.                                   …13分
所以这样的直角三角形有三个.                              …14分

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网