题目内容

【题目】某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

(1)经过进一步统计分析,发现具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.

参考公式:

【答案】(1);(2)见解析

【解析】

试题分析:

(I)由题意可得,则关于的线性回归方程为

(II)由题意可知二人所获购物券总金额的可能取值有元,它们所对应的概率分别为:据此可得分布列,计算相应的数学期望为

试题解析:

(I)依题意:

关于的线性回归方程为

(II)二人所获购物券总金额的可能取值有元,它们所对应的概率分别为:

所以,总金额的分布列如下表:

0

300

600

900

1200

总金额的数学期望为

练习册系列答案
相关题目

【题目】某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:

组别

年龄

组统计结果

组统计结果

经常使用单车

偶尔使用单车

经常使用单车

偶尔使用单车

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.

①求这60人中“年龄达到35岁且偶尔使用单车”的人数;

②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会.会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自组,求组这4人中得到礼品的人数的分布列和数学期望;

(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄应取25还是35?请通过比较的观测值的大小加以说明.

参考公式:,其中.

【题目】某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:

1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).

2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50。用样本平均数作为的近似值,用样本标准差作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.

参考数据:若随机变量服从正态分布,则.

3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从)若掷出反面遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为P试证明是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网