题目内容
已知数列的首项其中,令集合.
(Ⅰ)若是数列中首次为1的项,请写出所有这样数列的前三项;
(Ⅱ)求证:;
(Ⅲ)当时,求集合中元素个数的最大值.
(Ⅰ)若是数列中首次为1的项,请写出所有这样数列的前三项;
(Ⅱ)求证:;
(Ⅲ)当时,求集合中元素个数的最大值.
(Ⅰ)27,9,3;8,9,3;6,2,3..(Ⅱ)见解析. (Ⅲ)集合重元素个数的最大值为21.
试题分析:(Ⅰ)依次代入写出27,9,3;8,9,3;6,2,3.
(Ⅱ)根据及须讨论被3除余1,,被3除余2,被3除余0,等三种情况.
(Ⅲ)注意由已知递推关系推得数列满足:
当时,总有成立,其中.
因此应注意讨论当时,数列中大于3的各项:
按逆序排列各项,构成的数列记为,由(Ⅰ)可得或9,
由(Ⅱ)的证明过程即可知数列的项满足:
,且当是3的倍数时,若使最小,需使,
满足最小的数列中,或7,且,
得到数列是首项为或的公比为3的等比数列,应用等比数列的通项公式即可得出结论.
解答本题的关键是注意“转化”成等比数列问题.
试题解析:(Ⅰ)27,9,3;8,9,3;6,2,3. 3分
(Ⅱ)若被3除余1,则由已知可得,;
若被3除余2,则由已知可得,,;
若被3除余0,则由已知可得,;
所以,
所以
所以,对于数列中的任意一项,“若,则”.
因为,所以.
所以数列中必存在某一项(否则会与上述结论矛盾!)
若,则;若,则,若,则,
由递推关系易得. 8分
(Ⅲ)集合中元素个数的最大值为21.
由已知递推关系可推得数列满足:
当时,总有成立,其中.
下面考虑当时,数列中大于3的各项:
按逆序排列各项,构成的数列记为,由(I)可得或9,
由(Ⅱ)的证明过程可知数列的项满足:
,且当是3的倍数时,若使最小,需使,
所以,满足最小的数列中,或7,且,
所以,所以数列是首项为或的公比为3的等比数列,
所以或,即或,
因为,所以,当时,的最大值是6,
所以,所以集合重元素个数的最大值为21. 13分
练习册系列答案
相关题目