ÌâÄ¿ÄÚÈÝ
£¨2013•ËɽÇø¶þÄ££©ÒÑÖªÊýÁÐ{an}(n¡ÊN*)µÄÇ°nÏîºÍΪSn£¬ÊýÁÐ{
}ÊÇÊ×ÏîΪ0£¬¹«²îΪ
µÄµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=
•(-2)an(n¡ÊN*)£¬¶ÔÈÎÒâµÄÕýÕûÊýk£¬½«¼¯ºÏ{b2k-1£¬b2k£¬b2k+1}ÖеÄÈý¸öÔªËØÅųÉÒ»¸öµÝÔöµÄµÈ²îÊýÁУ¬Æ乫²îΪdk£¬ÇóÖ¤£ºÊýÁÐ{dk}ΪµÈ±ÈÊýÁУ»
£¨3£©¶Ô£¨2£©ÌâÖеÄdk£¬Ç󼯺Ï{x|dk£¼x£¼dk+1£¬x¡ÊZ}µÄÔªËظöÊý£®
Sn |
n |
1 |
2 |
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=
4 |
15 |
£¨3£©¶Ô£¨2£©ÌâÖеÄdk£¬Ç󼯺Ï{x|dk£¼x£¼dk+1£¬x¡ÊZ}µÄÔªËظöÊý£®
·ÖÎö£º£¨1£©ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£»
£¨2£©ÀûÓã¨1£©µÃ³öbn£¬´Ó¶øµÃ³öb2k£¬b2k-1£¬b2k+1ÒÀ´Î³ÉµÝÔöµÄµÈ²îÊýÁУ¬Çó³ödk=b2k+1-b2k-1£¬ÀûÓõȱÈÊýÁеĶ¨Òå¼´¿ÉÅжϳö½áÂÛ£»
£¨3£©¶Ôk·ÖÆæÊý¡¢Å¼ÊýÌÖÂÛ£¬ÀûÓöþÏîʽ¶¨ÀíÕ¹¿ª£¬¼´¿ÉµÃ³ö¼¯ºÏÔªËصĸöÊý£®
£¨2£©ÀûÓã¨1£©µÃ³öbn£¬´Ó¶øµÃ³öb2k£¬b2k-1£¬b2k+1ÒÀ´Î³ÉµÝÔöµÄµÈ²îÊýÁУ¬Çó³ödk=b2k+1-b2k-1£¬ÀûÓõȱÈÊýÁеĶ¨Òå¼´¿ÉÅжϳö½áÂÛ£»
£¨3£©¶Ôk·ÖÆæÊý¡¢Å¼ÊýÌÖÂÛ£¬ÀûÓöþÏîʽ¶¨ÀíÕ¹¿ª£¬¼´¿ÉµÃ³ö¼¯ºÏÔªËصĸöÊý£®
½â´ð£º½â£º£¨1£©ÓÉÌõ¼þµÃ
=0+(n-1)
£¬¼´Sn=
(n-1)£¬
¡àan=n-1(n¡ÊN*)£®
£¨2£©ÓÉ£¨1£©¿ÉÖªbn=
•(-2)n-1(n¡ÊN*)
¡àb2k-1=
(-2)2k-2=
•22k-2£¬b2k=
(-2)2k-1=-
•22k-1£¬b2k+1=
(-2)2k=
•22k£¬
ÓÉ2b2k-1=b2k+b2k+1¼°b2k£¼b2k-1£¼b2k+1µÃb2k£¬b2k-1£¬b2k+1ÒÀ´Î³ÉµÝÔöµÄµÈ²îÊýÁУ¬
ËùÒÔdk=b2k+1-b2k-1=
•22k-
•22k-2=
£¬
Âú×ã
=4Ϊ³£Êý£¬ËùÒÔÊýÁÐ{dk}ΪµÈ±ÈÊýÁУ®
£¨3£©¢Ùµ±kΪÆæÊýʱ£¬
ͬÑù£¬¿ÉµÃdk+1=
=
=5k-
5k-1+
5k-2-¡+
50(-1)k+
£¬
ËùÒÔ£¬¼¯ºÏ{x|dk£¼x£¼dk+1£¬x¡ÊZ}µÄÔªËظöÊýΪ(dk+1-
)-(dk+
)+1=dk+1-dk+
=
£»
¢Úµ±kΪżÊýʱ£¬Í¬Àí¿ÉµÃ¼¯ºÏ{x|dk£¼x£¼dk+1£¬x¡ÊZ}µÄÔªËظöÊýΪ
Sn |
n |
1 |
2 |
n |
2 |
¡àan=n-1(n¡ÊN*)£®
£¨2£©ÓÉ£¨1£©¿ÉÖªbn=
4 |
15 |
¡àb2k-1=
4 |
15 |
4 |
15 |
4 |
15 |
4 |
15 |
4 |
15 |
4 |
15 |
ÓÉ2b2k-1=b2k+b2k+1¼°b2k£¼b2k-1£¼b2k+1µÃb2k£¬b2k-1£¬b2k+1ÒÀ´Î³ÉµÝÔöµÄµÈ²îÊýÁУ¬
ËùÒÔdk=b2k+1-b2k-1=
4 |
15 |
4 |
15 |
4k |
5 |
Âú×ã
dk+1 |
dk |
£¨3£©¢Ùµ±kΪÆæÊýʱ£¬
|
ͬÑù£¬¿ÉµÃdk+1=
4k+1 |
5 |
(5-1)k+1 |
5 |
C | 1 k+1 |
C | 2 k+1 |
C | k k+1 |
1 |
5 |
ËùÒÔ£¬¼¯ºÏ{x|dk£¼x£¼dk+1£¬x¡ÊZ}µÄÔªËظöÊýΪ(dk+1-
1 |
5 |
1 |
5 |
3 |
5 |
3(4k+1) |
5 |
¢Úµ±kΪżÊýʱ£¬Í¬Àí¿ÉµÃ¼¯ºÏ{x|dk£¼x£¼dk+1£¬x¡ÊZ}µÄÔªËظöÊýΪ
3•(4k-1) |
5 |
µãÆÀ£ºÊìÁ·ÕÆÎյȲîÊýÁеÄͨÏʽ¡¢µÈ±ÈÊýÁеĶ¨Òå¡¢¶þÏîʽ¶¨Àí¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿