ÌâÄ¿ÄÚÈÝ

£¨2013•Ëɽ­Çø¶þÄ££©ÒÑÖªÊýÁÐ{an}(n¡ÊN*)µÄÇ°nÏîºÍΪSn£¬ÊýÁÐ{
Sn
n
}
ÊÇÊ×ÏîΪ0£¬¹«²îΪ
1
2
µÄµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=
4
15
•(-2)an(n¡ÊN*)
£¬¶ÔÈÎÒâµÄÕýÕûÊýk£¬½«¼¯ºÏ{b2k-1£¬b2k£¬b2k+1}ÖеÄÈý¸öÔªËØÅųÉÒ»¸öµÝÔöµÄµÈ²îÊýÁУ¬Æ乫²îΪdk£¬ÇóÖ¤£ºÊýÁÐ{dk}ΪµÈ±ÈÊýÁУ»
£¨3£©¶Ô£¨2£©ÌâÖеÄdk£¬Ç󼯺Ï{x|dk£¼x£¼dk+1£¬x¡ÊZ}µÄÔªËظöÊý£®
·ÖÎö£º£¨1£©ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£»
£¨2£©ÀûÓã¨1£©µÃ³öbn£¬´Ó¶øµÃ³öb2k£¬b2k-1£¬b2k+1ÒÀ´Î³ÉµÝÔöµÄµÈ²îÊýÁУ¬Çó³ödk=b2k+1-b2k-1£¬ÀûÓõȱÈÊýÁеĶ¨Òå¼´¿ÉÅжϳö½áÂÛ£»
£¨3£©¶Ôk·ÖÆæÊý¡¢Å¼ÊýÌÖÂÛ£¬ÀûÓöþÏîʽ¶¨ÀíÕ¹¿ª£¬¼´¿ÉµÃ³ö¼¯ºÏÔªËصĸöÊý£®
½â´ð£º½â£º£¨1£©ÓÉÌõ¼þµÃ
Sn
n
=0+(n-1)
1
2
£¬¼´Sn=
n
2
(n-1)
£¬
¡àan=n-1(n¡ÊN*)£®
£¨2£©ÓÉ£¨1£©¿ÉÖªbn=
4
15
•(-2)n-1(n¡ÊN*)

¡àb2k-1=
4
15
(-2)2k-2=
4
15
22k-2
£¬b2k=
4
15
(-2)2k-1=-
4
15
22k-1
£¬b2k+1=
4
15
(-2)2k=
4
15
22k
£¬
ÓÉ2b2k-1=b2k+b2k+1¼°b2k£¼b2k-1£¼b2k+1µÃb2k£¬b2k-1£¬b2k+1ÒÀ´Î³ÉµÝÔöµÄµÈ²îÊýÁУ¬
ËùÒÔdk=b2k+1-b2k-1=
4
15
22k-
4
15
22k-2=
4k
5
£¬
Âú×ã
dk+1
dk
=4
Ϊ³£Êý£¬ËùÒÔÊýÁÐ{dk}ΪµÈ±ÈÊýÁУ®
£¨3£©¢Ùµ±kΪÆæÊýʱ£¬
dk=
4k
5
=
(5-1)k
5
=
5k-
C
1
k
5k-1+
C
2
k
5k-2-¡­+(-1)k
5
=5k-1-
C
1
k
5k-2+
C
2
k
5k-3-¡­+
C
k-1
k
50(-1)k-1-
1
5

ͬÑù£¬¿ÉµÃdk+1=
4k+1
5
=
(5-1)k+1
5
=5k-
C
1
k+1
5k-1+
C
2
k+1
5k-2-¡­+
C
k
k+1
50(-1)k+
1
5
£¬
ËùÒÔ£¬¼¯ºÏ{x|dk£¼x£¼dk+1£¬x¡ÊZ}µÄÔªËظöÊýΪ(dk+1-
1
5
)-(dk+
1
5
)+1
=dk+1-dk+
3
5
=
3(4k+1)
5
£»
¢Úµ±kΪżÊýʱ£¬Í¬Àí¿ÉµÃ¼¯ºÏ{x|dk£¼x£¼dk+1£¬x¡ÊZ}µÄÔªËظöÊýΪ
3•(4k-1)
5
µãÆÀ£ºÊìÁ·ÕÆÎյȲîÊýÁеÄͨÏʽ¡¢µÈ±ÈÊýÁеĶ¨Òå¡¢¶þÏîʽ¶¨Àí¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø