题目内容
【题目】如图,矩形垂直于正方形垂直于平面.且.
(1)求三棱锥的体积;
(2)求证:面面.
【答案】(Ⅰ);(Ⅱ)详见解析.
【解析】
(1)因为面面,
面面,
所以
又因为面,故,
因为,
所以即三棱锥的高,
因此三棱锥的体积
(2)如图,设的中点为,连结.
在中可求得;
在直角梯形中可求得;
在中可求得
从而在等腰,等腰中分别求得,
此时在中有,
所以
因为是等腰底边中点,所以,
所以,
因此面面
【方法点晴】
本题主要考查的是线面垂直和面面垂直的判定定理和性质定理,属于中档题.再立体几何中如果题目条件中有面面垂直,则必然会用到面面垂直的性质定理,即由面面垂直得线面垂直;证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.本题用到了直角三角形.
练习册系列答案
相关题目