题目内容
1.已知函数f(2x+1)=4x2+2x+1,求f(x)的解析式.分析 利用换元法设t=2x+1进行求解即可.
解答 解:设t=2x+1,则x=$\frac{t-1}{2}$,
则f(t)=4×($\frac{t-1}{2}$)2+2×$\frac{t-1}{2}$+1=t2-t+1,
则f(x)=x2-x+1.
点评 本题主要考查函数解析式的求解,利用换元法是解决本题的关键.
练习册系列答案
相关题目
10.在△ABC中,AB=7,AC=6,M是BC的中点,AM=4,则BC等于( )
A. | $\sqrt{21}$ | B. | $\sqrt{106}$ | C. | $\sqrt{69}$ | D. | $\sqrt{154}$ |