题目内容
已知函数
有三个极值点。
(I)证明:
;
(II)若存在实数c,使函数
在区间
上单调递减,求
的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240054394951086.png)
(I)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439510521.png)
(II)若存在实数c,使函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439526447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439542477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439557283.png)
(1)利用导数的符号判定函数单调性,以及桉树的极值,进而证明。
(2) 当
时,
所以
且![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439620506.png)
即
故
或
反之, 当
或
时,
总可找到
使函数
在区间
上单调递减.
(2) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439510521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439588526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439604449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439620506.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439635485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439651425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439635485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439651425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439698480.png)
总可找到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439713627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439526447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439542477.png)
试题分析:解:(I)因为函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240054394951086.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439791922.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439807843.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240054398221099.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439838404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439854578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439869442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439885539.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439900464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439916572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439869442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439947467.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439963360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439854578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439869442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440025510.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439869442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440056391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440072323.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440103556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440119524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440134518.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440134518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440181560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440197511.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440228629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440244574.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440259480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440290381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439510521.png)
(II)由(I)的证明可知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439510521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439526447.png)
不妨设为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440571499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440587511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440602935.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439526447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440634529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440649474.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439526447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439542477.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440696518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440634529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440696518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440649474.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440696518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440634529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440805522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440821443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440836408.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440696518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440649474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440883450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440899548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440914528.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440930878.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440946430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440961817.png)
因此, 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439510521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439588526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439604449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439620506.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439635485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439651425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439635485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439651425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439698480.png)
总可找到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439713627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439526447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005439542477.png)
点评:解决的关键是利用导数的符号判定函数的单调性,以及函数的极值,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目