题目内容
已知M是y=x2上一点,F为抛物线的焦点.A在C:(x-1)2+(y-4)2=1上,则|MA|+|MF|的最小值为( )
A.2 | B.4 | C.8 | D.10 |
B
【思路点拨】利用抛物线的定义,数形结合求解.
由题意可知,焦点坐标为F(0,1),准线方程为l:y=-1.过点M作MH⊥l于点H,由抛物线的定义,得|MF|=|MH|.∴|MA|+|MF|=|MH|+|MA|,当C,M,H,A四点共线时,|MA|=|MC|-1,|MH|+|MC|有最小值,
于是,|MA|+|MF|的最小值为4-(-1) -1=4.
由题意可知,焦点坐标为F(0,1),准线方程为l:y=-1.过点M作MH⊥l于点H,由抛物线的定义,得|MF|=|MH|.∴|MA|+|MF|=|MH|+|MA|,当C,M,H,A四点共线时,|MA|=|MC|-1,|MH|+|MC|有最小值,
于是,|MA|+|MF|的最小值为4-(-1) -1=4.
练习册系列答案
相关题目