题目内容
【题目】在四棱锥中,平面,是正三角形,,.
(1)求平面与平面所成的锐二面角的大小;
(2)点为线段上的一动点,设异面直线与直线所成角的大小为,当时,试确定点的位置.
【答案】(1)(2)的位置可以是,也可以是.
【解析】
(1)以所在直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,利用空间向量法求出二面角;
(2)由点为线段上的一动点,可设,,利用空间向量法表示出异面直线与直线所成的角的余弦值,从而求出的值,即可确定的位置.
解:(1)取的中点为,在平面内作,交于点.
因为是正三角形,
所以.
又因为平面,平面,
所以.
又因为,
平面,
由平面,,
所以直线平面.
如图,以所在直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系.
则,,,,,
,.
设平面的法向量,
所以,,
即,
取,则,
同理得平面的法向量,
设平面与平面所成的锐二面角为,
则.
又因为,
所以.
所以平面与平面所成的锐二面角的大小为.
(2)由点为线段上的一动点,可设,,
所以,.
由异面直线与直线所成角的大小为,
得,
所以,解得或.
所以的位置可以是,也可以是.
【题目】2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:
生猪存栏数量(千头) | 2 | 3 | 4 | 5 | 8 |
头猪每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究员甲根据以上数据认为与具有线性回归关系,请帮他求出关于的线.性回归方程(保留小数点后两位有效数字)
(2)研究员乙根据以上数据得出与的回归模型:.为了评价两种模型的拟合效果,请完成以下任务:
①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);
生猪存栏数量(千头) | 2 | 3 | 4 | 5 | 8 | |
头猪每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
残差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:.
参考数据:.
【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.
(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男 | 55 | ||
女 | |||
合计 |
(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024> | 6.635 |