题目内容
求矩阵的特征多项式.
λ2-3λ+4
解析
计算:= .
已知直线l:ax+y=1在矩阵A=对应的变换作用下变为直线l′:x+by=1.(1)求实数a、b的值;(2)若点P(x0,y0)在直线l上,且A=,求点P的坐标.
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=和e2=.(1)求矩阵A.(2)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
已知,求的值。
求函数f(x)=的值域.
设矩阵M=(其中a>0,b>0).(1)若a=2,b=3,求矩阵M的逆矩阵M-1;(2)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:+y2=1,求a、b的值.
已知M=,β=,计算M5β.
设矩阵M= (其中a>0,b>0).(1)若a=2,b=3,求矩阵M的逆矩阵M-1;(2)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:+y2=1,求a,b的值.