题目内容

【题目】如图,已知O为△ABC的外心,角A、B、C的对边分别为a、b、c.
(1)若5 +4 +3 = ,求cos∠BOC的值;
(2)若 = ,求 的值.

【答案】
(1)解:∵5 +4 +3 = ,即4 +3 =﹣5

两边平方,可得:4R2+9R2+24 =25R2

得24 =0

即| || |cos∠BOC=0,

∴cos∠BOC=0.


(2)解:∵ =

)= ),即

可得:﹣R2cos2A+R2cos2B=﹣R2cos2C+R2cos2A

∴2cos2A=cos2C+cos2B,

即2(1﹣2sin2A)=2﹣(2sin2B+2sin2C),

2sin2A=﹣sin2B+sin2C,

可得2a2=﹣b2+c2

那么: =2.


【解析】
【考点精析】认真审题,首先需要了解余弦定理的定义(余弦定理:;;).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网