题目内容
设x、y∈R,i |
j |
a |
i |
j |
b |
i |
j |
a |
b |
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点,设
OP |
OA |
OB |
分析:(1)根据向量的表达式和|
|+|
|的值可推断出点M(x,y)到两个定点F1(0,-2),F2(0,2)的距离之和为8.根据椭圆的定义判断出其轨迹为椭圆,进而根据c和a,求得b,则椭圆方程可得.
(2)先看当直线l是y轴,则A、B两点是椭圆的顶点.根据
=
+
=0可推断出P与O重合,与四边形OAPB是矩形矛盾.不可知直线的斜率一定存在,设出直线方程,和A,B的坐标,把直线方程与椭圆方程联立消去y,根据韦达定理求得x1+x2和x1x2的表达式,根据
=
+
和矩形的性质判断出OA⊥OB,即
•
=0.求得x1x2+y1y2=0,进而求得k.
a |
b |
(2)先看当直线l是y轴,则A、B两点是椭圆的顶点.根据
OP |
OA |
OB |
OP |
OA |
OB |
OA |
OB |
解答:(1)解:∵
=xi+(y+2)j,
=xi+(y-2)j,且|
|+|
|=8,
∴点M(x,y)到两个定点F1(0,-2),F2(0,2)的距离之和为8.
c=2,a=4,则b=
=2
∴轨迹C为以F1、F2为焦点的椭圆,方程为
+
=1.
(2)∵l过y轴上的点(0,3),
若直线l是y轴,则A、B两点是椭圆的顶点.
∵
=
+
=0,
∴P与O重合,与四边形OAPB是矩形矛盾.
∴直线l的斜率存在.设l方程为y=kx+3,A(x1,y1),B(x2,y2),
由y=kx+3,
+
=1,消y得(4+3k2)x2+18kx-21=0.
此时,△=(18k2)-4(4+3k2)>0恒成立且x1+x2=-
,x1x2=-
.
∵
=
+
,
∴四边形OAPB是平行四边形.若存在直线l,使得四边形OAPB是矩形,则OA⊥OB,即
•
=0.
∵
=(x1,y1),
=(x2,y2),
∴
•
=x1x2+y1y2=0,
即(1+k2)x1x2+3k(x1+x2)+9=0,
即(1+k2)•(-
)+3k•(-
)+9=0,即k2=
,得k=±
.
∴存在直线l:y=±
x+3,使得四边形OAPB是矩形.
a |
b |
a |
b |
∴点M(x,y)到两个定点F1(0,-2),F2(0,2)的距离之和为8.
c=2,a=4,则b=
16-4 |
3 |
∴轨迹C为以F1、F2为焦点的椭圆,方程为
x2 |
12 |
y2 |
16 |
(2)∵l过y轴上的点(0,3),
若直线l是y轴,则A、B两点是椭圆的顶点.
∵
OP |
OA |
OB |
∴P与O重合,与四边形OAPB是矩形矛盾.
∴直线l的斜率存在.设l方程为y=kx+3,A(x1,y1),B(x2,y2),
由y=kx+3,
x2 |
12 |
y2 |
16 |
此时,△=(18k2)-4(4+3k2)>0恒成立且x1+x2=-
18k |
4+3k2 |
21 |
4+3k2 |
∵
OP |
OA |
OB |
∴四边形OAPB是平行四边形.若存在直线l,使得四边形OAPB是矩形,则OA⊥OB,即
OA |
OB |
∵
OA |
OB |
∴
OA |
OB |
即(1+k2)x1x2+3k(x1+x2)+9=0,
即(1+k2)•(-
21 |
4+3k2 |
18k |
4+3k2 |
5 |
16 |
| ||
4 |
∴存在直线l:y=±
| ||
4 |
点评:本题主要考查了直线与圆锥曲线的综合问题.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,
练习册系列答案
相关题目