题目内容
设圆(x-2)2+(y-2)2=4的切线l与两坐标轴交于点A(a,0),B(0,b),ab≠0.
(1)证明:(a-4)(b-4)=8;
(2)若a>4,b>4,求△AOB的面积的最小值.

(1)证明:(a-4)(b-4)=8;
(2)若a>4,b>4,求△AOB的面积的最小值.

(1)证明:直线l的方程为
+
=1,即bx+ay-ab=0,
则圆心(2,2)到切线l的距离d=r,即
=2,
整理得:ab-4(a+b)+8=0,
则(a-4)(b-4)=8;
(2)由(a-4)(b-4)=8,得到ab=4(a+b)-8,
又a>4,b>4,
∴S△AOB=
ab=2[(a-4)+(b-4)+6]≥2(2
+6)=4(3+2
),(当且仅当a=b=4+2
时取等号),
则△AOB面积的最小值是12+8
.
x |
a |
y |
b |
则圆心(2,2)到切线l的距离d=r,即
|2b+2a-ab| | ||
|
整理得:ab-4(a+b)+8=0,
则(a-4)(b-4)=8;
(2)由(a-4)(b-4)=8,得到ab=4(a+b)-8,
又a>4,b>4,
∴S△AOB=
1 |
2 |
(a-4)(b-4) |
2 |
2 |
则△AOB面积的最小值是12+8
2 |

练习册系列答案
相关题目