题目内容
若定义上的函数满足:对于任意且当时有,若的最大值、最小值分别为M,N,M+N等于( )
A.2011 | B.2012 | C.4022 | D.4024 |
C
解析试题分析:令==0,则= ,f=2011
令=-,则 f(0)=f()+f(-)-2011,f()+f(-)=4022
因为 在[-2012,2012] 上是单调函数,所以 M+N=4022
考点:抽象最值,赋值法。
点评:充分利用已知条件,合理赋值是解题的关键。
练习册系列答案
相关题目
对于定义域为的函数和常数,若对任意正实数,使得恒成立,则称函数为“敛函数”.现给出如下函数:
①; ②;
③ ; ④.
其中为“敛1函数”的有
A.①② | B.③④ | C.②③④ | D.①②③ |
函数的值域是( )
A.[0,2] | B.[0,] | C.[-1,2] | D.[-1,] |
设是定义在R上的奇函数,当时,,则的值是 ( )
A. | B. | C.1 | D.3 |
设用二分法求方程在区间(1,2)上近似解的过程中,计算得到,则方程的根落在区( )
A.(1,1.25) | B.(1.25,1.5) | C.(1.5, 1.75) | D.(1.75,2) |
若函数的零点与的零点之差的绝对值不超过,则可以是
A. | B. |
C. | D. |
定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有
<0,则( )
A.f(3)<f(-2)<f(1) | B.f(1)<f(-2)<f(3) |
C.f(-2)<f(1)<f(3) | D.f(3)<f(1)<f(-2) |
下列函数为偶函数,且在上单调递增的函数是( )
A. | B. | C. | D. |