题目内容

【题目】定义下凸函数如下:设f(x)为区间I上的函数,若对任意的x1 , x2∈I总有f( )≥ ,则称f(x)为I上的下凸函数,某同学查阅资料后发现了下凸函数有如下判定定理和性质定理: 判定定理:f(x)为下凸函数的充要条件是f″(x)≥0,x∈I,其中f″(x)为f(x)的导函数f′(x)的导数.
性质定理:若函数f(x)为区间I上的下凸函数,则对I内任意的x1 , x2 , …,xn , 都有 ≥f( ).
请问:在△ABC中,sinA+sinB+sinC的最大值为

【答案】
【解析】解:设f(x)=sinx,x∈(0,π),则f′(x)=cosx,则f″(x)≤﹣sinx,x∈(0,π), 由当x∈(0,π),0<sin≤1,则f″(x)<0成立,则f(x)=sinx,x∈(0,π)是凸函数,
由凸函数的性质可知: ≤f( ).
则sinA+sinB+sinC≤3sin( )=3×sin =
∴sinA+sinB+sinC的最大值为
所以答案是:
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网