题目内容
(本小题满分14分)
已知,函数.
(Ⅰ)当时,求使成立的的集合;
(Ⅱ)求函数在区间上的最小值.
已知,函数.
(Ⅰ)当时,求使成立的的集合;
(Ⅱ)求函数在区间上的最小值.
(Ⅰ) (Ⅱ)最小值为
试题分析:(Ⅰ)由题意,.
当时,,解得或;
当时,,解得.
综上,所求解集为.
(Ⅱ)设此最小值为.
①当时,在区间上,.
因为,,
则在区间上是增函数,所以.
②当时,在区间上,,由知
.
③当时,在区间上,.
.
若,在区间内,从而为区间上的增函数,
由此得.
若,则.
当时,,从而为区间上的增函数;
当时,,从而为区间上的减函数.
因此,当时,或.
当时,,故;
当时,,故.
综上所述,所求函数的最小值
点评:求解含绝对值的不等式或函数问题,关键是通过讨论去掉绝对值符号,讨论的时候要注意做到“不重不漏”.
练习册系列答案
相关题目