题目内容
【题目】(本小题满分10分)[选修4-5:不等式选讲]
已知函数=|x-a|+(a≠0)
(1)若不等式-≤1恒成立,求实数m的最大值;
(2)当a<时,函数g(x)=+|2x-1|有零点,求实数a的取值范围
【答案】(1)1.
(2) [ - ,0 ).
【解析】分析:第一问首先根据题中所给的函数解析式,将相应的变量代入可得结果,之后应用绝对值不等式的性质得到其差值不超过,这就得到| m |≤1,解出范围从而求得其最大值,第二问解题的方向就是向最小值靠拢,应用最小值小于零,从而求得参数所满足的条件,求得结果.
详解:(Ⅰ) ∵ f (x) =|x-a|+ ,∴f(x+m)=|x+m-a|+ ,
∴f(x)-f(x+m)=|x-a|-|x+m-a|≤| m | ,
∴| m |≤1 , ∴-1≤ m ≤1 , ∴ 实数 m 的最大值为 1 ;
( Ⅱ )当 a <时,g(x)=f(x)+|2x -1|=|x-a|+|2x-1|+
=
∴ g(x)min =g()=-a+ =≤0 ,
∴或, ∴-≤a≤0,
∴ 实数 a 的取值范围是 [ - ,0 ).
练习册系列答案
相关题目