题目内容
【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线与轴交于点,直线与直线的交点为.
(1)证明:点恒在椭圆上.
(2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.
【答案】(1)见解析(2)存在,
【解析】
(1)根据题意求得的坐标,设出的坐标,求得直线的方程,由此求得的坐标,代入椭圆方程的左边,化简后得到,由此判断出恒在椭圆上.
(2)首先判断直线的斜率是否存在.然后当直线斜率存在时,设出直线的方程,判断出的位置并设出的坐标.联立直线的方程和椭圆方程,化简后利用判别式等于零求得的关系式,进而求得的坐标,结合点坐标以及,利用列方程,结合等式恒成立求得的坐标.
(1)证明:由题意知,设,则.
直线的方程为,直线的方程为,
联立可得,,即的坐标为.
因为,
所以点恒在椭圆上.
(2)解:当直线的斜率不存在时,不符合题意.不妨设直线的方程为,由对称性可知,若平面内存在定点,使得恒成立,则一定在轴上,故设,
由可得.
因为直线与椭圆只有一个公共点,
所以,
所以.
又因为,所以,
即.
所以对于任意的满足的恒成立,
所以解得.
故在平面内存在定点,使得恒成立.
【题目】某省从2021年开始将全面推行新高考制度,新高考“”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为五个等级,确定各等级人数所占比例分别为,,,,,等级考试科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法分别转换到、、、、五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:
等级 | |||||
比例 | |||||
赋分区间 |
而等比例转换法是通过公式计算:
其中,分别表示原始分区间的最低分和最高分,、分别表示等级分区间的最低分和最高分,表示原始分,表示转换分,当原始分为,时,等级分分别为、
假设小南的化学考试成绩信息如下表:
考生科目 | 考试成绩 | 成绩等级 | 原始分区间 | 等级分区间 |
化学 | 75分 | 等级 |
设小南转换后的等级成绩为,根据公式得:,
所以(四舍五入取整),小南最终化学成绩为77分.
已知某年级学生有100人选了化学,以半期考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得等级的学生原始成绩统计如下表:
成绩 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人数 | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)从化学成绩获得等级的学生中任取2名,求恰好有1名同学的等级成绩不小于96分的概率;
(2)从化学成绩获得等级的学生中任取5名,设5名学生中等级成绩不小于96分人数为,求的分布列和期望.