题目内容
【题目】将一块边长为6cm的正方形纸片,先按如图1所示的阴影部分截去四个全等的等腰三角形,然后将剩余部分沿虚线折叠并拼成一个正四棱锥模型(底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥),将该四棱锥如图2放置,若其正视图为正三角形,则其体积为cm3 .
【答案】
【解析】解:
∵正四棱锥的正视图是正三角形,正视图的底面边长为a,高为 a,
∴正四棱锥的斜高为a,
∵图1得出:∵将一张边长为6cm的纸片按如图1所示的阴影部分截去四个全等的等腰三角形
∴ ×6=a+ ,a=2
∴正四棱锥的体积是 a2× a= cm3 ,
故答案为 .
根据图形正四棱锥的正视图是正三角形,正视图的底面边长为a,高为 a,正四棱锥的斜高为a,运用图1得出 ×6=a+ ,a=2 ,计算出a,代入公式即可.
练习册系列答案
相关题目
【题目】某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:
信息技术 | 生物 | 化学 | 物理 | 数学 | |
周一 | |||||
周三 | |||||
周五 |
根据上表:
(1)求数学辅导讲座在周一、周三、周五都不满座的概率;
(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.