ÌâÄ¿ÄÚÈÝ
£¨2011•Ë³ÒåÇø¶þÄ££©¶ÔÓÚ¶¨ÒåÓò·Ö±ðΪM£¬NµÄº¯Êýy=f£¨x£©£¬y=g£¨x£©£¬¹æ¶¨£º
º¯Êýh(x)=
£¨1£©Èôº¯Êýf(x)=
£¬g(x)=x2+2x+2£¬x¡ÊR£¬Çóº¯Êýh£¨x£©µÄÈ¡Öµ¼¯ºÏ£»
£¨2£©Èôf£¨x£©=1£¬g£¨x£©=x2+2x+2£¬ÉèbnΪÇúÏßy=h£¨x£©Ôڵ㣨an£¬h£¨an£©£©´¦ÇÐÏßµÄбÂÊ£»¶ø{an}ÊǵȲîÊýÁУ¬¹«²îΪ1£¨n¡ÊN*£©£¬µãP1ΪֱÏßl£º2x-y+2=0ÓëxÖáµÄ½»µã£¬µãPnµÄ×ø±êΪ£¨an£¬bn£©£®ÇóÖ¤£º
+
+¡+
£¼
£»
£¨3£©Èôg£¨x£©=f£¨x+¦Á£©£¬ÆäÖЦÁÊdz£Êý£¬ÇÒ¦Á¡Ê[0£¬2¦Ð]£¬ÇëÎÊ£¬ÊÇ·ñ´æÔÚÒ»¸ö¶¨ÒåÓòΪRµÄº¯Êýy=f£¨x£©¼°Ò»¸ö¦ÁµÄÖµ£¬Ê¹µÃh£¨x£©=cosx£¬Èô´æÔÚÇëд³öÒ»¸öf£¨x£©µÄ½âÎöʽ¼°Ò»¸ö¦ÁµÄÖµ£¬Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£®
º¯Êýh(x)=
|
£¨1£©Èôº¯Êýf(x)=
1 |
x+1 |
£¨2£©Èôf£¨x£©=1£¬g£¨x£©=x2+2x+2£¬ÉèbnΪÇúÏßy=h£¨x£©Ôڵ㣨an£¬h£¨an£©£©´¦ÇÐÏßµÄбÂÊ£»¶ø{an}ÊǵȲîÊýÁУ¬¹«²îΪ1£¨n¡ÊN*£©£¬µãP1ΪֱÏßl£º2x-y+2=0ÓëxÖáµÄ½»µã£¬µãPnµÄ×ø±êΪ£¨an£¬bn£©£®ÇóÖ¤£º
1 |
|P1P2|2 |
1 |
|P1P3|2 |
1 |
|P1Pn|2 |
2 |
5 |
£¨3£©Èôg£¨x£©=f£¨x+¦Á£©£¬ÆäÖЦÁÊdz£Êý£¬ÇÒ¦Á¡Ê[0£¬2¦Ð]£¬ÇëÎÊ£¬ÊÇ·ñ´æÔÚÒ»¸ö¶¨ÒåÓòΪRµÄº¯Êýy=f£¨x£©¼°Ò»¸ö¦ÁµÄÖµ£¬Ê¹µÃh£¨x£©=cosx£¬Èô´æÔÚÇëд³öÒ»¸öf£¨x£©µÄ½âÎöʽ¼°Ò»¸ö¦ÁµÄÖµ£¬Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Óɺ¯Êýf(x)=
£¬g(x)=x2+2x+2£¬x¡ÊR£¬¿ÉµÃM={x|x¡Ù-1}£¬N=R£®´Ó¶øh(x)=
£®ÓÉ´ËÄÜÇó³öº¯Êýh£¨x£©µÄÈ¡Öµ¼¯ºÏ£®
£¨2£©ÓÉh£¨x£©=x2+2x+2£¬Öªh'£¨x£©=2x+2£¬ËùÒÔbn=g'£¨an£©=2an+2£¬ÓɵãPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬ÇÒa1=-1£¬ÓÖ{an}ÊǵȲîÊýÁУ¬¹«²îΪ1£¬Öªan=n-2£¬bn=2n-2¹ÊPn£¨n-2£¬2n-2£©£¬ÓÉ´ËÄܹ»Ö¤Ã÷
+
+¡+
£¼
£®£¨3£©Óɺ¯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪR£¬µÃg£¨x£©=f£¨x+a£©µÄ¶¨ÒåÓòΪR£®ËùÒÔ£¬¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐh£¨x£©=f£¨x£©•g£¨x£©
¼´¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐcosx=f£¨x£©•f£¨x+a£©£¬ËùÒÔ£¬Áîf(x)=
cos(
-
)£¬ÇÒ¦Á=¦Ð£¬¼´¿É£®
1 |
x+1 |
|
£¨2£©ÓÉh£¨x£©=x2+2x+2£¬Öªh'£¨x£©=2x+2£¬ËùÒÔbn=g'£¨an£©=2an+2£¬ÓɵãPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬ÇÒa1=-1£¬ÓÖ{an}ÊǵȲîÊýÁУ¬¹«²îΪ1£¬Öªan=n-2£¬bn=2n-2¹ÊPn£¨n-2£¬2n-2£©£¬ÓÉ´ËÄܹ»Ö¤Ã÷
1 |
|P1P2|2 |
1 |
|P1P3|2 |
1 |
|P1Pn|2 |
2 |
5 |
¼´¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐcosx=f£¨x£©•f£¨x+a£©£¬ËùÒÔ£¬Áîf(x)=
2 |
x |
2 |
¦Ð |
4 |
½â´ð£º½â£º£¨1£©Óɺ¯Êýf(x)=
£¬g(x)=x2+2x+2£¬x¡ÊR¿ÉµÃM={x|x¡Ù-1}£¬N=R
´Ó¶øh(x)=
µ±x£¾-1ʱ£¬h(x)=
=
=x+1+
¡Ý2
µ±x£¼-1ʱ£¬h(x)=
=
=-(-x-1+
)¡Ü-2
ËùÒÔh£¨x£©µÄÈ¡Öµ¼¯ºÏΪ{y|y¡Ü-2£¬»òy¡Ý2»òy=1}¡£®£¨5·Ö£©
£¨2£©Ò×Öªh£¨x£©=x2+2x+2£¬
ËùÒÔh'£¨x£©=2x+2ËùÒÔbn=g'£¨an£©=2an+2
ÏÔÈ»µãPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬ÇÒa1=-1£¬
ÓÖ{an}ÊǵȲîÊýÁУ¬¹«²îΪ1
ËùÒÔan=n-2£¬bn=2n-2¹ÊPn£¨n-2£¬2n-2£©£¬ÓÖP1£¨-1£¬0£©
ËùÒÔ|P1Pn|=
(n-1)(n¡Ý2)
ËùÒÔ
+
+¡+
=
[1+
+
+¡+
]£¼
[1+
+
+¡+
]
=
[1+1-
]£¼
¡..£¨8·Ö£©
£¨3£©Óɺ¯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪR£¬
µÃg£¨x£©=f£¨x+a£©µÄ¶¨ÒåÓòΪR£¬
ËùÒÔ£¬¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐh£¨x£©=f£¨x£©•g£¨x£©
¼´¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐcosx=f£¨x£©•f£¨x+a£©
ËùÒÔ£¬ÎÒÃÇ¿¼Âǽ«cosx·Ö½â³ÉÁ½¸öº¯ÊýµÄ³Ë»ý£¬
¶øÇÒÕâÁ½¸öº¯Êý»¹¿ÉÒÔͨ¹ýƽÒÆÏ໥ת»¯
cosx=cos2
-sin2
=(cos
+sin
)(cos
-sin
)
=
cos(
-
)•
cos(
+
)
ËùÒÔ£¬Áîf(x)=
cos(
-
)£¬
ÇÒ¦Á=¦Ð£¬¼´¿É ¡..£¨13·Ö£©
ÓÖcosx=1-2sin2
=(1+
sin
)(1-
sin
)
ËùÒÔ£¬Áîf(x)=1+
sin
£¬
ÇÒ¦Á=2¦Ð£¬¼´¿É£¨´ð°¸²»Î¨Ò»£©
1 |
x+1 |
´Ó¶øh(x)=
|
µ±x£¾-1ʱ£¬h(x)=
x2+2x+2 |
x+1 |
(x+1)2+1 |
x+1 |
1 |
x+1 |
µ±x£¼-1ʱ£¬h(x)=
x2+2x+2 |
x+1 |
(x+1)2+1 |
x+1 |
1 |
-x-1 |
ËùÒÔh£¨x£©µÄÈ¡Öµ¼¯ºÏΪ{y|y¡Ü-2£¬»òy¡Ý2»òy=1}¡£®£¨5·Ö£©
£¨2£©Ò×Öªh£¨x£©=x2+2x+2£¬
ËùÒÔh'£¨x£©=2x+2ËùÒÔbn=g'£¨an£©=2an+2
ÏÔÈ»µãPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬ÇÒa1=-1£¬
ÓÖ{an}ÊǵȲîÊýÁУ¬¹«²îΪ1
ËùÒÔan=n-2£¬bn=2n-2¹ÊPn£¨n-2£¬2n-2£©£¬ÓÖP1£¨-1£¬0£©
ËùÒÔ|P1Pn|=
5 |
ËùÒÔ
1 |
|P1P2|2 |
1 |
|P1P3|2 |
1 |
|P1Pn|2 |
1 |
5 |
1 |
22 |
1 |
32 |
1 |
(n-1)2 |
1 |
5 |
1 |
1•2 |
1 |
2•3 |
1 |
(n-2)(n-1) |
=
1 |
5 |
1 |
n-1 |
2 |
5 |
£¨3£©Óɺ¯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪR£¬
µÃg£¨x£©=f£¨x+a£©µÄ¶¨ÒåÓòΪR£¬
ËùÒÔ£¬¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐh£¨x£©=f£¨x£©•g£¨x£©
¼´¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐcosx=f£¨x£©•f£¨x+a£©
ËùÒÔ£¬ÎÒÃÇ¿¼Âǽ«cosx·Ö½â³ÉÁ½¸öº¯ÊýµÄ³Ë»ý£¬
¶øÇÒÕâÁ½¸öº¯Êý»¹¿ÉÒÔͨ¹ýƽÒÆÏ໥ת»¯
cosx=cos2
x |
2 |
x |
2 |
x |
2 |
x |
2 |
x |
2 |
x |
2 |
=
2 |
x |
2 |
¦Ð |
4 |
2 |
x |
2 |
¦Ð |
4 |
ËùÒÔ£¬Áîf(x)=
2 |
x |
2 |
¦Ð |
4 |
ÇÒ¦Á=¦Ð£¬¼´¿É ¡..£¨13·Ö£©
ÓÖcosx=1-2sin2
x |
2 |
2 |
x |
2 |
2 |
x |
2 |
ËùÒÔ£¬Áîf(x)=1+
2 |
x |
2 |
ÇÒ¦Á=2¦Ð£¬¼´¿É£¨´ð°¸²»Î¨Ò»£©
µãÆÀ£º±¾ÌâÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬½áºÏÈý½Çº¯ÊýµÄÐÔÖʵĴ¦ÀíÎÊÌ⣬¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬Ò׳ö´í£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÈý½Çº¯ÊýÐÔÖʵÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿