题目内容
设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:
(1)
的值;
(2)
的值.
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912041211.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912057504.gif)
(1)
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912104275.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912088234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912104275.gif)
(1)由余弦定理得
a2=b2+c2-2bccosA
=
+c2-2·
c·c·
=
c2,
故
=
.
(2)方法一
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912291720.gif)
=
=
,
由正弦定理和(1)的结论得
=
·
=
·
=
=
.
故
=
.
方法二 由余弦定理及(1)的结论有
cosB=
=
=
,
故sinB=
=
=
.
同理可得
cosC=
=
=-
,
sinC=
=
=
.
从而
=
+![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912915423.gif)
=
-
=
.
a2=b2+c2-2bccosA
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912119268.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912135204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912166206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912229210.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912041211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912088234.gif)
(2)方法一
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912057504.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912291720.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912338552.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912400502.gif)
由正弦定理和(1)的结论得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912400502.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912431378.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912478355.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912556246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912572429.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912587276.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912603275.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912057504.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912104275.gif)
方法二 由余弦定理及(1)的结论有
cosB=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912650484.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912665643.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912697362.gif)
故sinB=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912712432.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912728435.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912743277.gif)
同理可得
cosC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912775488.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912790656.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912790254.gif)
sinC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912806415.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912821419.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912853293.gif)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912057504.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912899436.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912915423.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912931261.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912993265.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125912104275.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目