题目内容
【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
【答案】见解析
【解析】(1)由分组[10,15)内的频数是10,频率是0.25,知=0.25,所以
M=40.因为频数之和为40,所以10+24+m+2=40,解得m=4,p==0.10.因为a是对应分组[15,20)的频率与组距的商,所以a==0.12.
(2)因为该校高三学生有240人,在[10,15)内的频率是0.25,
所以估计该校高三学生参加社区服务的次数在此区间内的人数为60.
(3)估计这次学生参加社区服务人数的众数是=17.5.因为n==
0.6,所以样本中位数是15+≈17.1,估计这次学生参加社区服务人
数的中位数是17.1.样本平均人数是12.5×0.25+17.5×0.6+22.5×0.1+
27.5×0.05=17.25,估计这次学生参加社区服务人数的平均数是17.25.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
(1)请根据12月2日至12月4日的数据,求出y关于x的线性回归方程(其中已计算出);
(2)若由线性回归方程得到的估计数据与所选出的检验数据(选取的检验数据是12月1日与12月5日的两组数据)的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?