题目内容
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
(1)请根据12月2日至12月4日的数据,求出y关于x的线性回归方程(其中已计算出);
(2)若由线性回归方程得到的估计数据与所选出的检验数据(选取的检验数据是12月1日与12月5日的两组数据)的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
【答案】(1);(2)该研究所得的线性回归方程可靠.
【解析】
试题分析:(1)根据所给的数据,先做出的平均数,即本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程;(2)根据估计数据与所选出的检验数据的误差均不超过颗,就认为得到的线性回归方程式可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.
试题解析:解:(1)由数据,求得,
由公式,求得
∴y关于x的线性回归方程为x﹣3.
(2)当x=10时,×10﹣3=22,|22﹣23|<2;
同样当x=8时,×8﹣3=17,|17﹣16|<2;
∴该研究所得到的回归方程是可靠的
【题目】某企业为打入国际市场,决定从、两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如下表:(单位:万美元)
年固定成本 | 每件产品成本 | 每件产品销售价 | 每年最多可生产的件数 | |
A产品 | 20 | 10 | 200 | |
B产品 | 40 | 8 | 18 | 120 |
其中年固定成本与年生产的件数无关,是待定常数,其值由生产产品的原材料决定,预计,另外,年销售件B产品时需上交万美元的特别关税,假设生产出来的产品都能在当年销售出去.
(1)求该厂分别投资生产A、两种产品的年利润与生产相应产品的件数之间的函数关系,并求出其定义域;
(2)如何投资才可获得最大年利润?请设计相关方案.
【题目】对某电子元件进行寿命追踪调查,情况如下.
寿命(h) | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个 数 | 20 | 30 | 80 | 40 | 30 |
(1)列出频率分布表,并画出频率分布直方图;
(2)从频率分布直方图估计出电子元件寿命的众数、中位数分别是多少?