题目内容
如图,四棱锥PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.
(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥PBDF的体积.
(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥PBDF的体积.
(1)见解析 (2)
(1)证明:因为BC=CD,所以△BCD为等腰三角形,
又∠ACB=∠ACD,故BD⊥AC.
因为PA⊥底面ABCD,所以PA⊥BD.
从而BD与平面PAC内两条相交直线PA,AC都垂直,
所以BD⊥平面PAC.
(2)解:三棱锥PBCD的底面BCD的面积S△BCD=BC·CD·sin∠BCD=×2×2×sin =.
由PA⊥底面ABCD,得
=·S△BCD·PA=××2=2.
由PF=7FC,得三棱锥FBCD的高为PA,
故=·S△BCD·PA=×××2=,
所以=-=2-=.
练习册系列答案
相关题目