题目内容

【题目】已知等差数列{an}的首项a1=2,前n项和为Sn , 等比数列{bn}的首项b1=1,且a2=b3 , S3=6b2 , n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)数列{cn}满足cn=bn+(﹣1)nan , 记数列{cn}的前n项和为Tn , 求Tn

【答案】
(1)解:设等差数列{an}的公差为d,等比数列{bn}的公比为q.

∵a1=2,b1=1,且a2=b3,S3=6b2,n∈N*

∴2+d=q2,3×2+ =6q,

联立解得d=q=2.

∴an=2+2(n﹣1)=2n,bn=2n1


(2)解:cn=bn+(﹣1)nan=2n1+(﹣1)n2n.

∴数列{cn}的前n项和为Tn=1+2+22+…+2n1+[﹣2+4﹣6+8+…+(﹣1)n2n]= +[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].

∴n为偶数时,Tn=2n﹣1+[(﹣2+4)+(﹣6+8)+…+(﹣2n+2+2n)].

=2n﹣1+n.

n为奇数时,Tn=2n﹣1+ ﹣2n.

=2n﹣2﹣n.

∴Tn=


【解析】(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.根据a1=2,b1=1,且a2=b3,S3=6b2,n∈N*

可得2+d=q2,3×2+ =6q,联立解得d,q.即可得出.(2)cn=bn+(﹣1)nan=2n1+(﹣1)n2n.可得数列{cn}的前n项和为Tn=1+2+22+…+2n1+[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].对n分类讨论即可得出.

【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网