题目内容
【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).
(1)将曲线的极坐标方程化为直角坐标方程;
(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.
【答案】(1) .(2) 或.
【解析】试题分析:
本题(1)可以利用极坐标与直角坐标 互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数 的关系式,利用,得到的三角方程,解方程得到的值,要注意角范围.
试题解析:
(1)由得.
∵, , ,
∴曲线的直角坐标方程为,
即;
(2)将代入圆的方程得.
化简得.
设两点对应的参数分别为,则
∴ ,
.
∴,
∵∴或.
练习册系列答案
相关题目
【题目】某学校高三年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.
(Ⅰ)完成下面的列联表;
不喜欢运动 | 喜欢运动 | 合计 | |
女生 | 50 | ||
男生 | |||
合计 | 100 | 200 |
(Ⅱ)在抽取的样本中,调查喜欢运动女生的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段和的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.