题目内容

有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4,
(1)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(2)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆有公共点的概率.

(1);(2)

解析试题分析:能理解放回抽样和不放回抽样中基本事件总数的变化是解该题的关键,(1)定义事件A=“第一次取到球的编号为偶数且两个球的编号之和能被3整除”,列举出逐个不放回取球两次的基本事件总数及第一次取到球的编号为偶数且两球编号能被3整除包含的基本事件数,代入古典概型概率的计算公式即可;
(2)定义事件B=“直线与圆有公共点”,列出基本事件总数及直线与圆有公共点包含的基本事件数,代入古典概型的概率计算公式即可.
试题解析:(1)记A=“第一次取到球的编号为偶数且两个球的编号之和能被3整除”,用表示先后两次不放回取球所构成的基本事件,则基本事件有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12个,事件A包含的基本事件有(2,1),(2,4),(4,2)共三个,所以
(2)记B=“直线与圆有公共点”,基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个,依题意,即,其中事件B包含的基本事件有(1,4),(2,4),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共8个,∴
考点:1、直线和圆的位置关系;2、古典概型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网