题目内容
已知双曲线mx2-ny2=1(m>0,n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为( )
(A) (B) (C) (D)
B
【解析】由已知双曲线的离心率为2,得:
=2,
解得m=3n,又m>0,n>0,
∴m>n,即>,
故由椭圆mx2+ny2=1得+=1.
∴所求椭圆的离心率为e===.
【误区警示】本题极易造成误选而失分,根本原因是由于将椭圆mx2+ny2=1焦点所在位置弄错,从而把a求错造成
练习册系列答案
相关题目