题目内容
已知离心率为的椭圆C1的左、右焦点分别为F1,F2,抛物线C2:y2=4mx(m>0)的焦点为F2,设椭圆C1与抛物线C2的一个交点为P(x',y'),,则椭圆C1的标准方程为 ;抛物线C2的标准方程为 .
【答案】分析:根据题意设出椭圆的方程,把椭圆的方程与抛物线的方程进行联立,得到交点的坐标,|PF1|的长,求出m的值,求写出椭圆的方程、抛物线C2的标准方程,得到结果.
解答:解:因为c=m,e=,
∴a=2m,b2=3m2,设椭圆方程为,
由椭圆的方程与y2=4mx,得3x2+16mx-12m2=0
即(x+6m)(3x-2m)=0,得x1=,
代入抛物线方程得y=m,P( ,m)
|PF2|=x1+m=,
|PF1|=2a-==,
∴m=1,
当m=1时,椭圆C1的标准方程为 ;抛物线C2的标准方程为 y2=4x.
故答案为:;y2=4x.
点评:本题考查解析几何与数列的综合题目,题目中所应用的数列的解题思想,用到曲线与曲线之间的交点问题,本题主要考查运算,整个题目的解答过程看起来非常繁琐,注意运算.
解答:解:因为c=m,e=,
∴a=2m,b2=3m2,设椭圆方程为,
由椭圆的方程与y2=4mx,得3x2+16mx-12m2=0
即(x+6m)(3x-2m)=0,得x1=,
代入抛物线方程得y=m,P( ,m)
|PF2|=x1+m=,
|PF1|=2a-==,
∴m=1,
当m=1时,椭圆C1的标准方程为 ;抛物线C2的标准方程为 y2=4x.
故答案为:;y2=4x.
点评:本题考查解析几何与数列的综合题目,题目中所应用的数列的解题思想,用到曲线与曲线之间的交点问题,本题主要考查运算,整个题目的解答过程看起来非常繁琐,注意运算.
练习册系列答案
相关题目