题目内容
5.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.(1)求f(x);
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位后,得到函数y=g(x)的图象,求g(x)的单调递减区间.
分析 (1)通过两角差的正弦函数化简函数的表达式,求出函数的周期,利用函数是偶函数求出φ,然后由相邻对称轴间的距离可求ω,即可求f(x);
(2)f(x)=2cos2x⇒g(x)=f(x-$\frac{π}{6}$)=2cos(2x-$\frac{π}{3}$),由2kπ≤2x-$\frac{π}{3}$≤2kπ+π (k∈Z)即可得g(x)的单调递减区间.
解答 解:(1)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)=2sin(ωx+φ-$\frac{π}{6}$),
因为函数是偶函数,所以φ-$\frac{π}{6}$=kπ+$\frac{π}{2}$,
∵0<φ<π,∴φ=$\frac{2π}{3}$.
函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$,
所以T=π,T=$\frac{2π}{ω}$=π,所以ω=2;
∴f(x)=2sin(2x+$\frac{π}{2}$)=2cos2x,…(6分)
(2)由知f(x)=2cos2x,
所以g(x)=f(x-$\frac{π}{6}$)=2cos[2(x-$\frac{π}{6}$)]=2cos(2x-$\frac{π}{3}$)…(9分)
由2kπ≤2x-$\frac{π}{3}$≤2kπ+π (k∈Z),解得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$(k∈Z),
因此g(x)的单调递减区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)…(12分)
点评 本题考查函数y=Asin(ωx+φ)的图象变换,关键是用好辅助角公式,再由其奇偶性与周期确定φ的值,重点考查三角函数的平移变换与单调性,属于中档题.
练习册系列答案
相关题目