题目内容
【题目】已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点.
(1)求椭圆的方程;
(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.
【答案】(1);(2)是,定点坐标为或
【解析】
(1)根据相切得到,根据离心率得到,得到椭圆方程.
(2)设直线的方程为,点、的坐标分别为,,联立方程得到,,计算点的坐标为,点的坐标为,圆的方程可化为,得到答案.
(1)根据题意:,因为,所以,
所以椭圆的方程为.
(2)设直线的方程为,点、的坐标分别为,,
把直线的方程代入椭圆方程化简得到,
所以,,
所以,,
因为直线的斜率,所以直线的方程,
所以点的坐标为,同理,点的坐标为,
故以为直径的圆的方程为,
又因为,,
所以圆的方程可化为,令,则有,
所以定点坐标为或.
练习册系列答案
相关题目