题目内容
【题目】某校高三的某次数学测试中,对其中100名学生的成绩进行分析,按成绩分组,得到的频率分布表如下:
组号 | 分组 | 频数 | 频率 |
第1组 | [90,100) | 15 | ① |
第2组 | [100,110) | ② | 0.35 |
第3组 | [110,120) | 20 | 0.20 |
第4组 | [120,130) | 20 | 0.20 |
第5组 | [130,140) | 10 | 0.10 |
合计 | 100 | 1.00 |
(1)求出频率分布表中①、②位置相应的数据;
(2)为了选拔出最优秀的学生参加即将举行的数学竞赛,学校决定在成绩较高的第3、4、5组中分层抽样取5名学生,则第4、5组每组各抽取多少名学生?
【答案】(1) 0.15 ; 35 (2) 2名, 1名
【解析】
(1)利用频率与频数的关系列方程即可求解。
(2)利用分层抽样中的比例关系列方程即可求解。
(1)设频率分布表中①、②位置相应的数据分别为:.
由题可得:
解得: ,
(2)设第4、5组每组各抽取个学生,
则:
解得:
练习册系列答案
相关题目
【题目】莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:
阅读过莫言的作品数(篇) | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(1)试估计该学校学生阅读莫言作品超过50篇的概率.
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为“对莫言作品的非常了解”与性别有关?
非常了解 | 一般了解 | 合计 | |
男生 | |||
女生 | |||
合计 |
注:K2=
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |