题目内容
【题目】在直角坐标系中,对于点,定义变换:将点变换为点,使得其中.这样变换就将坐标系内的曲线变换为坐标系内的曲线.则四个函数,,,在坐标系内的图象,变换为坐标系内的四条曲线(如图)依次是
A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④
【答案】A
【解析】
用x,y表示出a,b,根据反正切函数的单调性得出各自图象的a,b的范围及大小关系,从而得出答案.
解:由可得,
对于y3=ex(x>0),显然y3>1,∴b=arctany3,∴y3对应的图象为①;
对于y4=lnx(x>1),a=arctanx>arctan1,∴y4对应的图象为④;
对于y1和y2,当0<x<2时,2x>x2,∴arctan2x>arctanx2,
即当0<a<arctan2时,∴arctany1>arctany2,
∴y1对应的图象为②,y2对应的图象为③.
故选:A.
练习册系列答案
相关题目
【题目】科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:
(年龄/岁) | 26 | 27 | 39 | 41 | 49 | 53 | 56 | 58 | 60 | 61 |
(脂肪含量/%) | 14.5 | 17.8 | 21.2 | 25.9 | 26.3 | 29.6 | 31.4 | 33.5 | 35.2 | 34.6 |
根据上表的数据得到如下的散点图.
(1)根据上表中的样本数据及其散点图:
(i)求;
(i)计算样本相关系数(精确到0.01),并刻画它们的相关程度.
(2)若关于的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.
附:参考数据:,,,,,,
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为,.