题目内容
7.已知函数f(x)=4-x2(1)试判断函数f(x)的奇偶性并说明理由;
(2)用定义证明函数f(x)在[0,+∞)是减函数.
分析 (1)先求出函数的定义域,求出f(-x),判断出f(-x)与f(x)的关系,利用奇函数偶函数的定义判断出f(x)的奇偶性;
(2)设出定义域中的两个自变量,求出两个函数值的差,将差变形,判断出差的符号,据函数单调性的定义判断出函数的单调性.
解答 解:(1)f(x)的定义域为R,
又∵f(-x)=[4-(-x)2]=4-x2=f(x),
∴f(x)在R内是偶函数.
(2)设x1,x2∈R,0<x1<x2
∵f(x1)-f(x2)=(4-x12)-(4-x22)=x22-x12=(x2+x1)(x2-x1)
又x1,x2∈R,0<x1<x2,
∴(x2+x1)>0,(x2-x1)>0
∵f(x1)-f(x2)>0,
所以函数f(x)在[0,+∞)是减函数.
点评 判断函数的奇偶性应该先求出函数的定义域,判断定义域是否关于原点对称,若不对称则函数不具有奇偶性,若对称,再检验f(-x)与f(x)的关系;利用单调性的定义判断函数的单调性一定要将函数值的差变形到能判断出符号为止.
练习册系列答案
相关题目