题目内容
【题目】已知各项均为正数的数列{an}的前n项和为Sn , 且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017= .
【答案】
【解析】解:∵n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*), ∴[n(n+1)Sn﹣1](Sn+1)=0,Sn>0.
∴n(n+1)Sn﹣1=0,
∴Sn= = ﹣ .
∴S1+S2+…+S2017= +…+ = .
所以答案是: .
【考点精析】掌握数列的前n项和和数列的通项公式是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
【题目】某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.
组号 | 分组 | 频率 |
第1组 | [160,165) | 0.05 |
第2组 | 0.35 | |
第3组 | 0.3 | |
第4组 | 0.2 | |
第5组 | 0.1 | |
合计 | 1.00 |
(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;
(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;
(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.
【题目】某校为调查高一、高二学生周日在家学习用时情况,随机抽取了高一、高二各人,对他们的学习时间进行了统计,分别得到了高一学生学习时间(单位:小时)的频数分布表和高二学生学习时间的频率分布直方图.
高一学生学习时间的频数分布表(学习时间均在区间内):
学习时间 | ||||||
频数 | 3 | 1 | 8 | 4 | 2 | 2 |
高二学生学习时间的频率分布直方图:
(1)求高二学生学习时间的频率分布直方图中的值,并根据此频率分布直方图估计该校高二学生学习时间的中位数;
(2)利用分层抽样的方法,从高一学生学习时间在,的两组里随机抽取人,再从这人中随机抽取人,求学习时间在这一组中至少有人被抽中的概率.