题目内容

已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;
:(Ⅰ)由题意知e==,所以e2===.即a2=b2
又因为b==,所以a2=4,b2=3.故椭圆的方程为=1.…4分
(Ⅱ)由题意知直线PB的斜率存在,设直线PB的方程为y=k(x-4),和椭圆方程联立解决.
,得(4k2+3)x2-32k2x+64k2-12=0. ①…6分
设点B(x1,y1),E(x2,y2),则A(x1,-y1).直线AE的方程为y-y2=(x-x2).令y=0,得x=x2-.将y1=k(x1-4),y2=k(x2-4)代入,
整理,得x=. ②…8分
由①得x1+x2=,x1x2=…10分  代入②整理,得x=1.
所以直线AE与x轴相交于定点Q(1,0)
(1)离心率为=,椭圆的短半轴为半径的圆与直线x-y+=0相切,b==,解得a2=4,b2=3;(Ⅱ)直线PB的方程为y=k(x-4)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网