题目内容
15.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是( )A. | B. | C. | D. |
分析 通过观察函数y=xf′(x)的图象即可判断f′(x)的符号以及对应的x的所在区间,从而判断出函数f(x)的单调性及单调区间,所以观察选项中的图象,找出符合条件的即可.
解答 解:由图象看出,-1<x<0,和x>1时xf′(x)>0;x≤-1,和0≤x≤1时xf′(x)≤0;
∴-1<x≤1时,f′(x)≤0;x>1,或x≤-1时,f′(x)≥0;
∴f(x)在(-1,1]上单调递减,在(-∞,-1],(1,+∞)上单调递增;
∴f(x)的大致图象应是B.
故选B.
点评 考查观察图象的能力,对于积的不等式xf′(x)≥0,(或xf′(x)≤0)的求解,函数导数符号和函数单调性的关系.
练习册系列答案
相关题目
19.将不等式x2+x-2<0的解集记为P,将由函数f(x)=x3-x的零点构成的集合记为M,则集合P∩M为( )
A. | {x|-1≤x≤0} | B. | {-1,0} | C. | {x|0≤x≤1} | D. | {0,1} |
10.已知函数f(x)满足f(x)=f($\frac{1}{x}$),当x∈[1,3]时,f(x)=lnx,若在区间[$\frac{1}{3}$,3]内,曲线g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是( )
A. | (0,$\frac{1}{e}$) | B. | (0,$\frac{1}{2e}$) | C. | [$\frac{ln3}{3}$,$\frac{1}{e}$) | D. | [$\frac{ln3}{3}$,$\frac{1}{2e}$) |
5.将函数f(x)=cosx-$\sqrt{3}sinx$(x∈R)的图象向左平移a(a>0)个单位长度后,所得的图象关于原点对称,则a的最小值是( )
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |