题目内容
【题目】设函数 的定义域是R,对于任意实数 ,恒有,且当 时, 。
(1)求证: ,且当 时,有 ;
(2)判断 在R上的单调性;
(3)设集合A=,B=,若A∩B=,求的取值范围。
【答案】(1);(2) 在R上单调递减;(3)
【解析】试题分析:(1)利用赋值法证明, ,且当时, ,利用赋值法,只需令,即可证明当时,有;(2)利用函数的单调性的定义判断,只需设上,且,再作差比较与的大小即可;(3)先判断集合分别表示什么集合,两个集合都是点集, 表示圆心在,半径是的圆的内部, 表示直线,, 直线与圆内部没有交点,直线与圆相离或相切,再据此求出参数的范围.
试题解析:(1)由f(m+n)=f(m)f(n),令m=1,n=0,
则f(1)=f(1)f(0),且由x>0时,0<f(x)<1,∴f(0)=1;
设m=x<0,n=-x>0,∴f(0)=f(x)f(-x),∴
(2)由(1)及已知,对任意实数x都有f(x)>0,
设x1<x2,则x2-x1>0, ,
∴
,
∴f(x)在R上单调递减。
(3) ,由f(x)单调性知 ,
又 ,
又A∩B=, 无解,即, 无解,
从而.
【题目】现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:
未过度使用 | 过度使用 | 合计 | |
未患颈椎病 | 15 | 5 | 20 |
患颈椎病 | 10 | 20 | 30 |
合计 | 25 | 25 | 50 |
(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为,求的分布列及数学期望.
参考数据与公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用、、三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表:
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
甲 | 4次 | 6次 | 2次 | 12次 | |
乙 | 3次 | 6次 | 3次 | 12次 | |
丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量,求随机变量的分布列和数学期望.