题目内容
8.若A、B是△ABC的内角,且$cosA=\frac{3}{5}$,$sinB=\frac{5}{13}$,则sinC=$\frac{63}{65}$.分析 由条件利用同角三角函数的基本关系求得sinA、cosB的值,再利用诱导公式、两角和的正弦公式求得 sinC=sin(A+B)的值.
解答 解:由于A、B是△ABC的内角,且$cosA=\frac{3}{5}$,∴sinA=$\frac{4}{5}$>$\frac{\sqrt{2}}{2}$,∴A∈($\frac{π}{4}$,$\frac{π}{2}$).
又sinB=$\frac{5}{13}$<$\frac{1}{2}$,∴B∈(0,$\frac{π}{6}$),或B∈($\frac{5π}{6}$,π)(舍去),∴cosB=$\frac{12}{13}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{4}{5}×\frac{12}{13}$+$\frac{3}{5}×\frac{5}{13}$=$\frac{63}{65}$,
故答案为:$\frac{63}{65}$.
点评 本题主要考查同角三角函数的基本关系、诱导公式、两角和的正弦公式,属于中档题.
练习册系列答案
相关题目
19.设f(x)=|x2+2x-1|,若a<b<-1,且f(a)=f(b),则(a+1)(b+1)的取值范围是( )
A. | (-1,1) | B. | (0,1) | C. | (0,2) | D. | (1,2) |
16.设函数y=f(x)在区间(a,b)上的导函数f′(x),f′(x)在区间(a,b)上的导函数f″(x),若在区间(a,b)上f″(x)<0,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(1,3)上为“凸函数”,则实数m的取值范围是( )
A. | (-∞,$\frac{23}{9}$) | B. | [-3,$\frac{23}{9}$] | C. | [$\frac{23}{9}$,+∞) | D. | [-3,+∞) |
3.对于函数f(x)和g(x),设m∈{x∈R|f(x)=0},n∈{x∈R|g(x)=0},若存在m、n,使得|m-n|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=log2(x+1)-e1-x与g(x)=x2-ax-a+3互为“零点关联函数”,则实数a的取值范围为( )
A. | [2,$\frac{7}{3}$] | B. | [$\frac{7}{3}$,3] | C. | [2,3] | D. | [2,4] |
13.已知等比数列{an},若存在两项am,an使得aman=a32,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为( )
A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{9}{4}$ | D. | $\frac{7}{6}$ |
20.函数f(x)=lnx-x2的极值情况为( )
A. | 无极值 | B. | 有极小值,无极大值 | ||
C. | 有极大值,无极小值 | D. | 不确定 |