题目内容
【题目】如图,四棱锥的底面是直角梯形,,⊥,△和△是两个边长为2的正三角形,.
(1)求证:平面⊥平面;
(2)求二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)证明:易得,又,计算可得 ,又平面平面平面;(2)解:由(1)知平面,又建立坐标系求得:平面的法向量为,又平面的一个法向量为二面角的余弦值为.
试题解析:(1)证明:设是的中点,连接,
∵和是两个边长为的正三角形,∴,
又,∴,
∵,
∴在中,由勾股定理可得,,
∴,
在中,由勾股定理可得,
在中,.
在中,,由勾股定理的逆定理可得,
又∵,
∴平面,
∵平面,
∴平面平面.
(2)解:由(1)知平面,又.
∴过分别作,的平行线,以它们作,轴,以为轴建立如图所示的空间直角坐标系.
由已知得:,,,,,
则,,
设平面的法向量为,
则即解得令,
则平面的一个法向量为,又平面的一个法向量为,
则,
∴二面角的余弦值为.
练习册系列答案
相关题目
【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |