题目内容
【题目】轮船从某港口将一些物品送到正航行的轮船上,在轮船出发时,轮船位于港口北偏西且与相距20海里的处,并正以30海里的航速沿正东方向匀速行驶,假设轮船沿直线方向以海里/小时的航速匀速行驶,经过小时与轮船相遇.
(1)若使相遇时轮船航距最短,则轮船的航行速度大小应为多少?
(2)假设轮船的最高航速只能达到30海里/小时,则轮船以多大速度及什么航行方向才能在最短时间与轮船相遇,并说明理由.
【答案】(1)轮船以海里/小时的速度航行,相遇时轮船航距最短;(2)航向为北偏东,航速为30海里/小时,轮船能在最短时间与轮船相遇.
【解析】试题分析:(1)设两轮船在处相遇,在 中,利用余弦定理得出关于t的函数,从而得出的最小值及其对应的,得出速度;
(2)利用余弦定理计算航行时间,得出 距离,从而得出 的度数,得出航行方案.
试题解析:(1)设相遇时轮船航行的距离为海里,则
.
∴当时, , ,
即轮船以海里/小时的速度航行,相遇时轮船航距最短.
(2)设轮船与轮船在处相遇,则 ,
即.
∵,
∴,即,解得,又时,
∴时, 最小且为,此时中,
∴航向为北偏东,航速为30海里/小时,
轮船能在最短时间与轮船相遇.
练习册系列答案
相关题目
【题目】某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;
(2)试估计这批小龙虾的平均重量;
(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量() | |||
单价(元/只) | 1.2 | 1.5 | 1.8 |
试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?