题目内容

平面向量
a
b
的夹角为60°,
a
=(2,0),|
b
|=1,则|
a
+2
b
|=(  )
A、
3
B、2
3
C、4
D、12
分析:根据向量的坐标求出向量的模,最后结论要求模,一般要把模平方,知道夹角就可以解决平方过程中的数量积问题,题目最后不要忘记开方.
解答:解:由已知|a|=2,
|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12
∴|a+2b|=2
3

故选B
点评:本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,根据和的模两边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网