题目内容

平面向量
a
b
的夹角为
π
3
,若
a
=(2,0)
|b|
=1
,则|
a
+2
b
|
=(  )
分析:分析由向量
a
=(2,0)
,求出向量|
a
|
,要求|
a
+2
b
|
,先求其平方,展开后代入数量积公式,最后开方即可.
解答:解:由
a
=(2,0),所以|
a
|
=
22+02
=2

所以|
a
+2
b
|2=(
a
+2
b
)2
=(
a
)2+4
a
b
+4(
b
)2
=|
a
|2+4|
a
||
b
|cos
π
3
+4|
b
|2

=22+4×2×1×
1
2
+4×12
=12.
所以|
a
+2
b
|=2
3

故选B.
点评:点评本题考查了向量的模及向量的数量积运算,考查了数学转化思想,解答此题的关键是运用(
a
)2=|
a
|2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网